
3.0 Enhancement Checklist
(or "How to be 3.0 Hip")

When you update your application to Release 3.0, the following is a list of features you 
should strongly consider adding to your application to take advantage of the new 3.0 
feature set.    This information is provided as a checklist and primarily consists of features 
every 3.0 application should probably support.    There are many other new and exciting 
3.0 features (such as Distributed Objects, 3DKit, DBKit, Indexing Kit) that are not 
mentioned here because they are relevant to a smaller set of applications.

· Object links.    Every application running under NEXTSTEP 3.0 should take 
advantage, if at all possible, of the powerful ability to link external data or files into 
the documents of an application.    Likewise a document- or data-oriented 
application should support exporting data links.    Linking is performed using the 
familiar Copy/Paste metaphor for data and the Drag-n-Drop metaphor for 
filesÐprogrammers should consider implementing both forms of object links.    
Bundled applications that import data links are Edit and Draw.    Bundled 
applications that export data links are Draw, IconBuilder, and Graph.    See the 3.0 
Examples Graph and Draw, the AppKit and ObjectLinks Release Notes, and the 
NXDataLink spec sheets for more information on how to implement object linking.

· Filter services.    A Filter service is a new 3.0 type of Service which has no menu 
item but supports the ability to convert a piece of data from one type to another.    
Every application can take advantage of filter services when opening files (via 
+typesFilterableTo: if it can open a standard type, like RTF) and when importing 
data via copy/paste or dragging (via +imagePasteboardTypes).

Other applications can provide filter services:    for example, if you have some code 



which converts your document format [the WonderFormat] to RTFD, then you 
should provide this functionality as a filter service.    Another application which 
understands RTFD but not WonderFormat can still import WonderFormat 
documents and the filter service will do the work of the conversion.    The other 
advantage of providing a filter to ascii is that your documents then become 
indexible by Digital Librarian.    See the 3.0 AppKit Release Notes and the 
Pasteboard specification sheet for more information on:    +typesFilterableTo:, 
+newByFilteringFile:, +newByFilteringData:, 
+newByFilteringTypesInPasteboard:.

· New dragging mechanism.    The drag and drop mechanism is new and improved
in 3.0.    Under 2.x, drag and drop was implemented using the registerWindow:, 
etc. methods.    (These methods will continue to work in 3.0 but are being 
obsoleted.)    For 3.0, a new Workspace Protocol has been added which supports 
interapplication dragging in View and Window classes and should actually simplify 
your code.    The new dragging mechanism can be used both for inter-application 
dragging and intra-application dragging (as in palettes).    See the 3.0 AppKit 
Release Notes and the View, Window and NXDraggingDestination spec sheets for 
more information on (to name some of the methods involved):    -
registerForDraggedTypes:, -draggingEntered:, -draggingUpdated:, -
draggingExited:, -prepareForDragOperation:, -performDragOperation: and 
-concludeDragOperation:.

· Dragging TIFF and EPS [i.e. image] data.    As a side note, any application 
which supports drag and drop of TIFF or EPS should (instead of registering for 
".tiff" and ".eps" explicitly) register for [NXImage imagePasteboardTypes].    
This method returns a NULL terminated list of strings and allows your 
application to take advantage of other image types that NXImage knows how to 



convert between, such as the RIB format (if libMedia is linked with your 
application) or other formats supported via the filter services mechanism.    See 
the AppKit Release Notes and the NXImage spec sheet for more information on 
+imagePasteboardTypes.    (Note:    all applications that import data via 
NXImage should start linking with libMedia.)

· Dragging colors.    Another side note: applications should no longer use the -
acceptColor:atPoint: method for accepting colors.    (The -acceptColor: 
method will continue to work for 3.0 but should be avoided.)    Dragging colors 
should be implemented via the normal drag/drop protocols with the 
NXColorPBoardType.    See the 3.0 AppKit Release Notes for more information on 
-acceptColor: and NXColorPBoardType.

· Undo.    Undo is a very powerful mechanism that we strongly encourage all 3.0 
applications to support.    To this end, the Draw Example (in 
/NextDeveloper/Examples/Appkit/Draw) illustrates a whole framework for 
supporting Undo.    Draw has three subprojects which implement Undo and two of 
these subprojects have been designed so that they can be added to an existing 
application with minimal effort:    a reusable Change class, a reusable UndoText 
class,    and a class specific to Draw.    See the UndoDoc.rtf and UndoREADME.rtf 
files in the Draw Example for more information.

· Help.    The Help facility is another powerful user mechanism that has been 
integrated into InterfaceBuilder for 3.0 that every application should support.    The 
easiest way to implement Help in your application is to use the Help panel to 
display any help files you may have already written.    The next level of 
implementation involves attaching help files to each of the buttons, menus and 
other controls in your application.    For more information on how to implement 



Help, see the 3.0 InterfaceBuilder and AppKit Release Notes, the NXHelpPanel spec 
sheet and the Draw Example.

· Device independent color:    calibrated RGB and Pantone.    Colors should be 
set via the NXSetColor() function and should use NXColor for color storage.    
(Colors should not be set via PSsetrgbcolor() if you wish to take advantage of 
device independent color.)    Applications using NXSetColor() and NXColor can take
advantage (for free) of the calibrated RGB color space in Release 3.0 which emits 
device independent colors to all Level 2 devices.    See the 3.0 AppKit and 
WindowServer Release Notes for further information on NXSetColor() and the 
NXColor spec sheet.

· Restoring Windows to previous location and size.    Persistent windows can 
now take advantage of the new Window methods which allow saving and restoring 
a window by name.    These methods use the defaults database to store the position
and size of the window so that when you recreate the window it will adopt the same
characteristics.    See the 3.0 AppKit Release Notes and the Window class 
specification sheet for more information on:    -saveFrameUsingName:, -
setFrameUsingName:, -setFrameAutosaveName:, -frameAutosaveName and
-removeFrameUsingName:.

· Creating a Workspace contents inspector.    You can now create your own 
contents inspector which Workspace can use when one of your documents is 
selected.    See the 3.0 IntroWorkspace.rtf document and the WMInspector class 
spec sheet for more information on building an inspector module.

· Find text object.    The ability to find text has been added to the Text object 
making it much easier to implement a text search panel.    See the Text class 



specification sheet for more information on -findText:.

· RTFD.    The Text object now supports reading, writing and editing the RTFD file 
format.    (Under 2.x the Text object only supported reading and writing of straight 
ascii and RTF files.)    See the 3.0 AppKit Release Notes and the Text class spec 
sheet for more information on (to name a few of the methods):    -
setGraphicsImportEnabled:, -saveRTFDTo:, -openRTFDFrom: and -
writeRTFDTo:.

· Localization.    While making an application localizable to other languages was 
encouraged under the 2.x release of NeXTSTEP, it is now easier to implement in 3.0
with additional support in InterfaceBuilder and ProjectBuilder.    Under 3.0, any 
application created via ProjectBuilder will automatically bundle the nib files, binary 
and other necessary files into an NXBundle (which looks suspiciously like an app 
wrapper in days of yore).    All methods in the AppKit which used to look in the 
mach-O section to find something, now look in [NXBundle mainBundle] if the 
desired object is not in the mach-O section.    See the 3.0 Localization Chapter of 
the Concepts Manual for more information on how to make your application 
localizable for 3.0.    (Note:    Localizing an application is different than making that 
application localizable.    Localizing involves the actual translation while making it 
localizable puts the framework in place so that it can be translatedÐusually by 
someone other than the programmer.)

· Keyboard key codes are not portable to other platforms.    The keyCode 
information (available in the event data for key events) is device-dependent for a 
particular keyboard (and is documented as such).    NeXT recently started shipping 
a keyboard with new key codes and any application which relied on the old raw key 
codes will almost certainly perform differently.    In order to keep software as 



portable to as many platforms as possible, an application should avoid examining 
raw key codes at all costs.    (It is safe to use charSet and event flags along with 
charCode to distinguish between key events.)    To quickly determine if your 
application uses raw key codes, search your source files for the string "keyCode".

· Copying/moving/compressing/destroying files via the Workspace.    Any 
application which supports copying or moving files around (or compressing or 
destroying files, to name some of the supported functions) should use the new 
Workspace Protocol method -performFileOperation:.    This method allows you to 
ask the Workspace to perform an operation such as copying or moving a file and 
will update the Processes panel with the Background process information and the 
animated pie chart.    See the 3.0 AppKit Release Notes and 
NXWorkspaceRequestProtocol specification sheet for more information on -
performFileOperation: and the list of operations it supports.

QA845

Valid for 3.0, 3.1


